Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change

نویسندگان

  • Emma J Sayer
  • Anna E Oliver
  • Jason D Fridley
  • Andrew P Askew
  • Robert T E Mills
  • J Philip Grime
چکیده

Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species-rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short-term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community-weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon-to-nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long-term climate change effects, especially in nutrient-poor systems with slow-growing vegetation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change

Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a n...

متن کامل

Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

BACKGROUND Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant dive...

متن کامل

Plant community controls on short‐term ecosystem nitrogen retention

Retention of nitrogen (N) is a critical ecosystem function, especially in the face of widespread anthropogenic N enrichment; however, our understanding of the mechanisms involved is limited. Here, we tested under glasshouse conditions how plant community attributes, including variations in the dominance, diversity and range of plant functional traits, influence N uptake and retention in tempera...

متن کامل

Microorganisms and their residues under restored perennial grassland communities of varying diversity

Rising atmospheric CO2 concentration and global mean temperatures have stimulated interest in managing terrestrial systems to sequester more carbon and mitigate climate change. In a restored prairie experiment, we compared high diversity (HD, 25 species) with low diversity (LD, 6 species) prairies to investigate the effect of plant diversity on soil microbial communities and their residues with...

متن کامل

Effects of Climate Change and Drought-Stress on Plant Physiology

Drought is still limited in most crops is produced. Morphological and physiological knowledge to improve drought resistance under drought conditions created problems important is the fact each of these genetic relationships and processes associated with the exact amount of important plant and grain yield is unknown. The other hand, heritability of grain yield under water is reduced. Improve the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017